算法

基本要素

算法的核心是创建问题抽象的模型和明确求解目标,之后可以根据具体的问题选择不同的模式和方法完成算法的设计。

常用设计模式

完全遍历法和不完全遍历法:在问题的解是有限离散解空间,且可以验证正确性和最优性时,最简单的算法就是把解空间的所有元素完全遍历一遍,逐个检测元素是否是我们要的解。这是最直接的算法,实现往往最简单。但是当解空间特别庞大时,这种算法很可能导致工程上无法承受的计算量。这时候可以利用不完全遍历方法——例如各种搜索法和规划法——来减少计算量。

分治法:把一个问题分区成互相独立的多个部分分别求解的思路。这种求解思路带来的好处之一是便于进行并行计算。

动态规划法:当问题的整体最优解就是由局部最优解组成的时候,经常采用的一种方法。

贪婪算法:常见的近似求解思路。当问题的整体最优解不是(或无法证明是)由局部最优解组成,且对解的最优性没有要求的时候,可以采用的一种方法。

线性规划法:见词条。

简并法:把一个问题通过逻辑或数学推理,简化成与之等价或者近似的、相对简单的模型,进而求解的方法。

常用实现方法

递归方法迭代方法

顺序计算、并行计算分布式计算:顺序计算就是把形式化算法用编程语言进行单线程序列化后执行。

确定性算法和非确定性算法

精确求解和近似求解

形式化算法

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。

复杂度

时间复杂度

算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做

算法执行时间的增长率与f(n) 的增长率正相关,称作渐近时间复杂度(Asymptotic Time Complexity),简称时间复杂度。

常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

空间复杂度

算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

results matching ""

    No results matching ""